Existence and Uniqueness of Maximal Regular Flows for Non-smooth Vector Fields
نویسندگان
چکیده
منابع مشابه
Existence and uniqueness of maximal regular flows for non-smooth vector fields
In this paper we provide a complete analogy between the Cauchy-Lipschitz and the DiPerna-Lions theories for ODE’s, by developing a local version of the DiPerna-Lions theory. More precisely, we prove existence and uniqueness of a maximal regular flow for the DiPerna-Lions theory using only local regularity and summability assumptions on the vector field, in analogy with the classical theory, whi...
متن کاملOn Existence and Uniqueness Verification for Non-Smooth Functions
It is known that interval Newton methods can verify existence and uniqueness of solutions of a nonlinear system of equations near points where the Jacobi matrix of the system is not ill-conditioned. Recently, we have shown how to verify existence and uniqueness, up to multiplicity, for solutions at which the Jacobi matrix is singular. We do this by efficient computation of the topological index...
متن کاملExistence and Uniqueness of Equilibria for Flows over Time
Network flows that vary over time arise naturally when modeling rapidly evolving systems such as the Internet. In this paper, we continue the study of equilibria for flows over time in the single-source single-sink deterministic queuing model proposed by Koch and Skutella. We give a constructive proof for the existence and uniqueness of equilibria for the case of a piecewise constant inflow rat...
متن کاملOn the Uniqueness of Maximal Operators for Ergodic Flows
The uniqueness theorem for the ergodic maximal operator is proved in the continuous case. Let (X, S, μ) be a finite measure space, μ(X) < ∞, (1) and let (Tt)t≥0 be an ergodic semigroup of measure-preserving transformations of (X, S, μ). As usual the map (x, t) → Ttx is assumed to be jointly measurable. For an integrable function f , f ∈ L(X), the ergodic maximal function f∗ is defined by equati...
متن کاملExistence and Uniqueness of Maximal Reductions under Iterated Strict Dominance
Iterated elimination of strictly dominated strategies is an order dependent procedure. It can also generate spurious Nash equilibria, fail to converge in countable steps, or converge to empty strategy sets. If best replies are well-defined, then spurious Nash equilibria cannot appear; if strategy spaces are compact and payoff functions are uppersemicontinuous in own strategies, then order does ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2015
ISSN: 0003-9527,1432-0673
DOI: 10.1007/s00205-015-0875-9